The structure-guided virtual screening (VS) has proved to be successful strategy in identification of new scaffolds for biological targets. The overactivity of NLRP3 inflammasome has been implicated in variety of inflammatory diseases including Alzheimer's disease. The up-regulation of estrogen-receptor β (ER-β) activity has been directly linked with inhibition of NLRP3 inflammasome activity. In the present study, we report discovery of new NLRP3 inflammasome inhibitors via ER-β crystal structure (PDB: 5TOA) guided virtual screening of 20,000 compound library. For experimental validation, top 10 ligands were selected based on structure novelty, docking score, prime MMGB/SA binding affinity and interaction pattern analysis. Amongst the tested compounds, three thiazolidin-4-ones IIIM-1268, IIIM-1269 and IIIM-1270 and benzo[cd]indol-2-one IIIM-1266 have shown 73, 69, 75 and 77% suppression of IL-1β release in mouse macrophages (J774A.1 cells) at 10 µM. Benzylidene-thiazolidine-2,4-diones IIIM-1268 and IIIM-1270 inhibited IL-1β release with IC50 of 2.3 and 3.5 µM and also significantly decreased the protein expression level of mature form of IL-1β in western-blot analysis. IIIM-1266 and IIIM-1270 displayed bidentate H-bonding with Arg 346 and Glu 305 residues in the active site of ER-β; and they also strongly occupied the ADP-binding site of NLRP3 protein. The results presented herein, indicate that ER-β guided VS can be successfully used to identify new NLRP3 inflammasome inhibitors, which may have potential in the development of novel anti-Alzheimer agents.
Keywords: Alzheimer's disease; Benzo[cd]indol-2-one; ER-β; NLRP3 inflammasome; Structure based virtual screening; Thiazolidine-2,4-dione.
Copyright © 2019 Elsevier Inc. All rights reserved.