Background: An ideal imaging biomarker for a neurodegenerative disorder should be able to measure abnormalities in the earliest stages of the disease.
Objective: We investigated metabolic network changes in two independent cohorts of drug-naïve Parkinson's disease (PD) patients who have not been exposed to dopaminergic medication.
Methods: We scanned 85 de novo, drug-naïve PD patients and 85 age-matched healthy control subjects from Italy (n = 96) and the United States (n = 74) with [18 F]-fluorodeoxyglucose PET. All patients had clinical follow-ups to verify the diagnosis of idiopathic PD. Spatial covariance analysis was used to identify and validate de novo PD-related metabolic patterns in the Italian and U.S. cohorts. We compared the de novo PD-related metabolic patterns to the original PD-related pattern that was identified in more advanced patients who had been on chronic dopaminergic treatment.
Results: De novo PD-related metabolic patterns were identified in each of the two independent cohorts of drug-naïve PD patients, and each differentiated PD patients from healthy control subjects. Expression values for these disease patterns were elevated in drug-naïve PD patients relative to healthy controls in the identification as well as in each of the validation subgroups. The two de novo PD-related metabolic patterns were topographically very similar to each other and to the original PD-related pattern.
Conclusions: Reproducible PD-related patterns are expressed in de novo, drug-naïve PD patients. In PD, disease-related metabolic patterns have stereotyped topographies that develop independently of chronic levodopa treatment. © 2019 International Parkinson and Movement Disorder Society.
Keywords: PET; Parkinson's disease; drug naïve; imaging biomarker; network analysis.
© 2019 International Parkinson and Movement Disorder Society.