Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection

J Anim Sci. 2020 Jan 1;98(1):skz396. doi: 10.1093/jas/skz396.

Abstract

We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)-infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.

Keywords: Salmonella; barrier function; chicken; gut morphology; immunity; inulin.

Publication types

  • Clinical Trial, Veterinary

MeSH terms

  • Animal Feed
  • Animals
  • Chickens*
  • Diet / veterinary
  • Dietary Supplements*
  • Intestinal Mucosa / drug effects*
  • Intestinal Mucosa / metabolism
  • Intestines / drug effects*
  • Inulin / administration & dosage*
  • Inulin / pharmacology
  • Lipopolysaccharides / pharmacology
  • Salmonella Infections, Animal / microbiology
  • Salmonella Infections, Animal / pathology*
  • Salmonella enteritidis
  • Specific Pathogen-Free Organisms

Substances

  • Lipopolysaccharides
  • Inulin