Hepatitis C virus-specific CD4+ T cell phenotype and function in different infection outcomes

J Clin Invest. 2020 Feb 3;130(2):768-773. doi: 10.1172/JCI126277.

Abstract

CD4+ T cell failure is a hallmark of chronic hepatitis C virus (HCV) infection. However, the mechanisms underlying the impairment and loss of virus-specific CD4+ T cells in persisting HCV infection remain unclear. Here we examined HCV-specific CD4+ T cells longitudinally during acute infection with different infection outcomes. We found that HCV-specific CD4+ T cells are characterized by expression of a narrower range of T cell inhibitory receptors compared with CD8+ T cells, with initially high expression levels of PD-1 and CTLA-4 that were associated with negative regulation of proliferation in all patients, irrespective of outcome. In addition, HCV-specific CD4+ T cells were phenotypically similar during early resolving and persistent infection and secreted similar levels of cytokines. However, upon viral control, CD4+ T cells quickly downregulated inhibitory receptors and differentiated into long-lived memory cells. In contrast, persisting viremia continued to drive T cell activation and PD-1 and CTLA-4 expression, and blocked T cell differentiation, until the cells quickly disappeared from the circulation. Our data support an important and physiological role for inhibitory receptor-mediated regulation of CD4+ T cells in early HCV infection, irrespective of outcome, with persistent HCV viremia leading to sustained upregulation of PD-1 and CTLA-4.

Keywords: Adaptive immunity; Hepatitis; Immunology; Infectious disease; T cells.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural

MeSH terms

  • CD4-Positive T-Lymphocytes / immunology*
  • CD4-Positive T-Lymphocytes / pathology
  • CD8-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / pathology
  • CTLA-4 Antigen / immunology*
  • Female
  • Hepacivirus / immunology*
  • Hepatitis C / immunology*
  • Hepatitis C / pathology
  • Humans
  • Male
  • Middle Aged
  • Programmed Cell Death 1 Receptor / immunology*

Substances

  • CTLA-4 Antigen
  • CTLA4 protein, human
  • PDCD1 protein, human
  • Programmed Cell Death 1 Receptor