Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we show that images produced by phenological cameras can be used to quantify the within-population variability of budburst (WPVbb) in temperate deciduous forests. Using seven site-years of image analyses, we report a strong correlation (r2 = 0.97) between the WPVbb determined with a phenological camera and its quantification through ground observation. We show that WPVbb varies strongly (by a factor of 4) from year to year in a given population and that those variations are linked with temperature conditions during the budburst period, with colder springs associated to a higher differentiation of budburst (higher WPVbb) among trees. Deploying our approach at the continental scale, i.e., throughout phenological cameras networks, would improve the understanding of the spatial (across populations) and temporal (across years) variations of WPVbb, which have strong implications on forest functioning, tree fitness and phenological modelling.
Keywords: Image analysis; Leaf-out; Phenology; Temperate forests; Within-population variability.