Gaseous emissions from municipal solid waste (MSW) have raised many concerns and complaints. Identifying the key volatile pollutants in the complex gaseous emissions from MSW is significant for the efficient mitigation of their odor nuisances and health risks. For this purpose, we present an integrated investigation of the key volatile pollutants in the gaseous emissions of MSW from the perspectives of emission patterns, odor concentrations and health risks. Air samples were collected during four different emission stages of the waste matrix for both chemical and olfactometric analyses. The total chemical concentrations of the volatile compounds in the air samples were in the range of 21.49 mg m-3 to 295.61 mg m-3, and the odor concentrations varied from 1122 ouE m-3 to 17,782 ouE m-3. The odor concentrations in the air samples were well correlated with the odor activity values (OAVs) of sulfur compounds, oxygenated compounds and ammonia (r = 0.922, 0.879 and 0.780, respectively, for n = 17 and p < 0.01). Moreover, from an integrated perspective involving chemical emissions, the proportions of odor concentrations and health risks, ethanol, methyl mercaptan and hydrogen sulfide were identified as the key volatile pollutants in the gaseous emissions from the waste matrix during the airtight storage stage, and dimethyl disulfide, 1,2-dichloroethane and trichloroethylene were the key volatile pollutants during the ventilation stage.
Keywords: Halogenated compounds; Health risk; Key volatile pollutants; Municipal solid waste; Odor; Sulfur compounds.
Copyright © 2020 Elsevier Ltd. All rights reserved.