Orientation-dependent aloof-beam vibrational electron-energy-loss spectroscopy is carried out on uniaxial icosahedral B_{12}P_{2} submicron crystals. We demonstrate that the high sensitivity of the signal to the crystal orientation allows for an unambiguous determination of the symmetry of normal modes occurring at the Brillouin zone center of this anisotropic compound. The experimental results are assessed using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The high spatial resolution inherent to this technique when implemented in the transmission electron microscope thus opens the door to nanoscale orientation-dependent vibrational spectroscopy.