The Shapley value for a fair division of group discounts for coordinating cooling loads

PLoS One. 2020 Jan 10;15(1):e0227049. doi: 10.1371/journal.pone.0227049. eCollection 2020.

Abstract

We consider a demand response program in which a block of apartments receive a discount from their electricity supplier if they ensure that their aggregate load from air conditioning does not exceed a predetermined threshold. The goal of the participants is to obtain the discount, while ensuring that their individual temperature preferences are also satisfied. As such, the apartments need to collectively optimise their use of air conditioning so as to satisfy these constraints and minimise their costs. Given an optimal cooling profile that secures the discount, the problem that the apartments face then is to divide the total discounted cost in a fair way. To achieve this, we take a coalitional game approach and propose the use of the Shapley value from cooperative game theory, which is the normative payoff division mechanism that offers a unique set of desirable fairness properties. However, applying the Shapley value in this setting presents a novel computational challenge. This is because its calculation requires, as input, the cost of every subset of apartments, which means solving an exponential number of collective optimisations, each of which is a computationally intensive problem. To address this, we propose solving the optimisation problem of each subset suboptimally, to allow for acceptable solutions that require less computation. We show that, due to the linearity property of the Shapley value, if suboptimal costs are used rather than optimal ones, the division of the discount will be fair in the following sense: each apartment is fairly "rewarded" for its contribution to the optimal cost and, at the same time, is fairly "penalised" for its contribution to the discrepancy between the suboptimal and the optimal costs. Importantly, this is achieved without requiring the optimal solutions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Conditioning / economics*
  • Cooperative Behavior*
  • Cost-Benefit Analysis
  • Electricity
  • Game Theory*
  • Group Processes*
  • Humans
  • Independent Living / economics*
  • Models, Economic*
  • Reward

Grants and funding

SM received a post-doctoral fellowship from the National Elites Foundation of Iran. TR, SG, AR and NJ were supported by the EPSRC in the United Kingdom through "Intelligent Agents for Home Energy Management" project (EP/I000143/1) and ORCHID programme grant (EP/I011587/1). AM, DA and NJ were supported by the Deanship of Scientific Research at King Abdulaziz University (9-15-1432-HiCi). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.