Coastal and estuarine ecosystems, such as mangroves, tidal marshes and seagrass meadows, provide a range of ecosystem services, but have seen extensive degradation and decline. Effective protection and rehabilitation of coastal ecosystems requires an understanding of how efforts may improve associated ecosystem services. In this study, we present a spatially-explicit angler catch function to predict boat-based recreational catch as a function of ecosystem and angler characteristics. We developed a choice model to investigate where recreational anglers launch their boats and fish in southeast Australia. By linking the recreational catch models with a choice model, we were able to quantify welfare gains of ecosystem rehabilitation. We found welfare gains across fishing locations varied widely due to heterogeneous coverage of seagrass. The welfare gains of different fishing locations ranged from near-zero in areas of low seagrass coverage, to AU $19.18 (10% increase in seagrass area) and to AU $85.55 (30% increase) per trip in location of high seagrass coverage. Given two million fishing trips occurring per year in Port Phillip Bay, and one million in Western Port, the aggregated welfare gain could scale up to AU $6.2 million with a 10% increase in seagrass coverage, and AU $22 million per annum with a 30% increase in seagrass. We also calculated the welfare loss associated with total loss of seagrass ecosystem in each fishing location to represent the current value, which varied significantly, ranging from near-zero in some locations to AU $87.47 per trip in other locations. Over the past several decades, the bay-wide seagrass ecosystem has dropped by 36.7% in Western Port, resulting in potential welfare loss of an estimated AU $ 86.7 million per annum. Our analyses provide insightful spatial policy implications for coastal and marine ecosystem rehabilitation in the region.
Keywords: Boat-based recreational fisheries; Discrete choice model; Economic benefit; Ecosystem rehabilitation; Ecosystem services.
Copyright © 2019 Elsevier B.V. All rights reserved.