The RIG-I receptor plays a key role in the vertebrate innate immune system, where it functions as a sensor for detecting infection by RNA viruses. Although agonists of RIG-I show great potential as antitumor and antimicrobial therapies, antagonists of RIG-I remain undeveloped, despite the role of RIG-I hyperstimulation in a range of diseases, including COPD and autoimmune disorders. There is now a wealth of information on RIG-I structure, enzymatic function, and signaling mechanism that can drive new drug design strategies. Here, we used the enzymatic activity of RIG-I to develop assays for high-throughput screening, SAR, and downstream optimization of RIG-I antagonists. Using this approach, we have developed potent RIG-I antagonists that interact directly with the receptor and which inhibit RIG-I signaling and interferon response in living cells.