In Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) surgery, the verification of the acoustic coupling correctness between the HIFU transducer and the patient's body is a fundamental step for an efficient and safe therapy. Nowadays, clinicians perform this check by qualitative inspecting Ultrasound images. The aim of this study is the introduction of an objective index to quantitively evaluate the coupling on the base of the radiofrequency echo signals acquired during a low-energy HIFU shot. The experimental session involved a tissue mimicking phantom and a robotic system composed by a HIFU therapeutic transducer and a 2D confocal Ultrasound probe. 15 different coupling conditions between the phantom and the transducer were tested: in each of them, the maximum absolute value of the Fourier Transform of the echo signals was computed and employed to determine an Acoustic Coupling (AC) coefficient.This metrics showed a sigmoidal trend between AC coefficient and coupling increase. This curve can be employed as a calibration tool to quantitatively assess the correctness of the therapeutic set-up before starting the HIFU treatment.