Imaging photoplethysmography (iPPG) is an interesting alternative to laser speckle contrast imaging for the analysis of spatio-temporal patterns in the cutaneous microcirculation. Recent years have witnessed the development of sophisticated techniques for the non-invasive extraction of vascular-related features. These techniques, referred to as pulse decomposition algorithms (PDA), most often involve the analysis of photoplethysmographic waves. This study validated the use of a multi-Gaussian (PDA) for the automatic mapping of iPPG pulse waveforms acquired with a standard camera. We show that iPPG-based PDA can reveal differences in skin perfusion in response to cold stimuli. The study thus proves the potential for morphological analyses of the iPPG pulse waveform.