Structural aspects of decreasing the corrosion resistance of zinc coating obtained in baths with Al, Ni, and Pb additives

Materials (Basel). 2020 Jan 14;13(2):385. doi: 10.3390/ma13020385.

Abstract

The article presented the results of tests determining the synergistic effect of Al, Ni, and Pb additions on a zinc bath on the structure and corrosion resistance of coatings obtained on low silicon steel. Analyzed coatings were produced on S235JRG2 steel with Si content of 0.02 mass%. The corrosion resistance of the coatings was compared with the corrosion resistance of the coating obtained in the "pure" zinc bath. Structure at high magnifications (SEM) was determined, as well as coating thickness and chemical composition in microspheres. The corrosion resistance of the coatings was established comparatively in standard corrosion tests in neutral salt spray and a humid atmosphere containing SO2. It was found that the addition of Pb to the zinc bath reduced the corrosion resistance of the coatings. In the coating structure obtained in the Zn-AlNiPb bath, lead precipitation was observed in both the outer layer and the intermediate layer of the coating. Grain boundaries were the preferred site for lead precipitation. The presence of Pb precipitates favored conditions for the creation of additional corrosion cells, which led to a decrease in the corrosion resistance of the coatings.

Keywords: corrosion resistance; hot-dip galvanizing; zinc coatings.