Background: This research was aimed to measure the expression of miR-9 in serum of acute ischemic stroke (AIS) patients and explore the role of miR-9 on OGD-induced neuronal damage.
Methods: In the present study, we measured the expression of miR-9 in serum of 65 AIS patients by real-time quantitative PCR (RT-qPCR) and the effect of miR-9 on oxygen-glucose deprivation (OGD)-induced neuronal injury was detected by CCK-8 in vitro. Western blot was used to measure the expression of protein.
Results: We found that the serum level of miR-9 in 65 AIS patients was significantly higher than that in control group (no-AIS), and was positively correlated with NIHSS score (r=0.627, P<0.001), infarct volume ((r=0.576, P<0.001), serum IL-8 (r=0.376, P=0.002), TNF-α (r=0.418, P<0.001), IL-6 (r=0.545, P<0.001), and IL-1β (r=0.592, P<0.001). miR-9 expression levels were upregulated in cultured neurons with OGD treatment. The downregulation of miR-9 significantly alleviated OGD-induced neuronal injury. Dual-luciferase reporter assay demonstrated that SIRT1 was a target gene of miR-9, and miR-9 negatively regulated SIRT 1 expression and positively regulated p65 expression.
Conclusions: All in all, our data showed that downregulation of miR-9 protected neurons against OGD/R-induced injury by the SIRT1-mediated NF-kB pathway.
Keywords: acute ischemic stroke; inflammation; miR-9; neuronal.
IJCEP Copyright © 2018.