In the wake of the Rohingya population's mass migration from Myanmar, one of the world's largest refugee settlements was constructed in Cox's Bazar, Bangladesh to accommodate nearly 900,000 new refugees. Refugee populations are particularly vulnerable to infectious disease outbreaks due to many population and environmental factors. A large measles outbreak, with over 1700 cases, occurred among the Rohingya population between September and November 2017. Here, we estimate key epidemiological parameters and use a dynamic mathematical model of measles transmission to evaluate the effectiveness of the reactive vaccination campaigns in the refugee camps. We also estimate the potential for subsequent outbreaks under different vaccination coverage scenarios. Our modeling results highlight the success of the vaccination campaigns in rapidly curbing transmission and emphasize the public health importance of maintaining high levels of vaccination in this population, where high birth rates and historically low vaccination coverage rates create suitable conditions for future measles outbreaks.
Keywords: Bangladesh; Mathematical modeling; Measles; Rohingya; Vaccination.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.