Early versus delayed postoperative radiotherapy for treatment of low-grade gliomas

Cochrane Database Syst Rev. 2020 Jan 20;1(1):CD009229. doi: 10.1002/14651858.CD009229.pub3.

Abstract

Background: This is an update of the review originally published in 2011 and first updated in 2015. In most people with low-grade gliomas (LGG), the primary treatment regimen remains a combination of surgery followed by postoperative radiotherapy. However, the optimal timing of radiotherapy is controversial. It is unclear whether to use radiotherapy in the early postoperative period, or whether radiotherapy should be delayed until tumour progression occurs.

Objectives: To assess the effects of early postoperative radiotherapy versus radiotherapy delayed until tumour progression for low-grade intracranial gliomas in people who had initial biopsy or surgical resection.

Search methods: Original searches were run up to September 2014. An updated literature search from September 2014 through November 2019 was performed on the following electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 11), MEDLINE via Ovid (September 2014 to November week 2 2019), and Embase via Ovid (September 2014 to 2019 week 46) to identify trials for inclusion in this Cochrane review update.

Selection criteria: We included randomised controlled trials (RCTs) that compared early versus delayed radiotherapy following biopsy or surgical resection for the treatment of people with newly diagnosed intracranial LGG (astrocytoma, oligodendroglioma, mixed oligoastrocytoma, astroblastoma, xanthoastrocytoma, or ganglioglioma). Radiotherapy may include conformal external beam radiotherapy (EBRT) with linear accelerator or cobalt-60 sources, intensity-modulated radiotherapy (IMRT), or stereotactic radiosurgery (SRS).

Data collection and analysis: Three review authors independently assessed the trials for inclusion and risk of bias, and extracted study data. We resolved any differences between review authors by discussion. Adverse effects were also extracted from the study report. We performed meta-analyses using a random-effects model with inverse variance weighting.

Main results: We included one large, multi-institutional, prospective RCT, involving 311 participants; the risk of bias in this study was unclear. This study found that early postoperative radiotherapy was associated with an increase in time to progression compared to observation (and delayed radiotherapy upon disease progression) for people with LGG but did not significantly improve overall survival (OS). The median progression-free survival (PFS) was 5.3 years in the early radiotherapy group and 3.4 years in the delayed radiotherapy group (hazard ratio (HR) 0.59, 95% confidence interval (CI) 0.45 to 0.77; P < 0.0001; 311 participants; 1 trial; low-quality evidence). The median OS in the early radiotherapy group was 7.4 years, while the delayed radiotherapy group experienced a median overall survival of 7.2 years (HR 0.97, 95% CI 0.71 to 1.33; P = 0.872; 311 participants; 1 trial; low-quality evidence). The total dose of radiotherapy given was 54 Gy; five fractions of 1.8 Gy per week were given for six weeks. Adverse effects following radiotherapy consisted of skin reactions, otitis media, mild headache, nausea, and vomiting. Rescue therapy was provided to 65% of the participants randomised to delayed radiotherapy. People in both cohorts who were free from tumour progression showed no differences in cognitive deficit, focal deficit, performance status, and headache after one year. However, participants randomised to the early radiotherapy group experienced significantly fewer seizures than participants in the delayed postoperative radiotherapy group at one year (25% versus 41%, P = 0.0329, respectively).

Authors' conclusions: Given the high risk of bias in the included study, the results of this analysis must be interpreted with caution. Early radiation therapy was associated with the following adverse effects: skin reactions, otitis media, mild headache, nausea, and vomiting. People with LGG who underwent early radiotherapy showed an increase in time to progression compared with people who were observed and had radiotherapy at the time of progression. There was no significant difference in overall survival between people who had early versus delayed radiotherapy; however, this finding may be due to the effectiveness of rescue therapy with radiation in the control arm. People who underwent early radiation had better seizure control at one year than people who underwent delayed radiation. There were no cases of radiation-induced malignant transformation of LGG. However, it remained unclear whether there were differences in memory, executive function, cognitive function, or quality of life between the two groups since these measures were not evaluated.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Systematic Review

MeSH terms

  • Brain Neoplasms / mortality
  • Brain Neoplasms / radiotherapy*
  • Brain Neoplasms / surgery
  • Disease-Free Survival
  • Glioma / radiotherapy*
  • Glioma / surgery
  • Humans
  • Postoperative Care
  • Progression-Free Survival
  • Radiosurgery
  • Radiotherapy / methods
  • Randomized Controlled Trials as Topic
  • Time Factors
  • Watchful Waiting