Four-And-A-Half LIM-Domain Protein 2 (FHL2) Deficiency Aggravates Cholestatic Liver Injury

Cells. 2020 Jan 19;9(1):248. doi: 10.3390/cells9010248.

Abstract

Cholestasis occurs in different clinical circumstances and leads to severe hepatic disorders. The four-and-a-half LIM-domain protein 2 (FHL2) is a scaffolding protein that modulates multiple signal transduction pathways in a tissue- and cell context-specific manner. In this study, we aimed to gain insight into the function of FHL2 in cholestatic liver injury. FHL2 expression was significantly increased in the bile duct ligation (BDL) model in mice. In Fhl2-deficient (Fhl2-ko) mice, BDL caused a more severe portal and parenchymal inflammation, extended portal fibrosis, higher serum transaminase levels, and higher pro-inflammatory and pro-fibrogenic gene expression compared to wild type (wt) mice. FHL2 depletion in HepG2 cells with siRNA resulted in a higher expression of the bile acid transporter Na+-taurocholate cotransporting polypeptide (NTCP) gene. Furthermore, FHL2-depleted HepG2 cells showed higher expression of markers for oxidative stress, lower B-cell lymphoma 2 (Bcl2) expression, and higher Bcl2-associated X protein (BAX) expression after stimulation with deoxycholic acid (DCA). In hepatic stellate cells (HSCs), FHL2 depletion caused an increased expression of TGF-β and several pro-fibrogenic matrix metalloproteinases. In summary, our study shows that deficiency in FHL2 aggravates cholestatic liver injury and suggests FHL2-mediated effects on bile acid metabolisms and HSCs as potential mechanisms for pronounced hepatocellular injury and fibrosis.

Keywords: FHL2; bile acids; cholestatic liver injury; four-and-a-half LIM-domain protein 2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bile Acids and Salts / metabolism
  • Bile Ducts / pathology
  • Cholestasis / metabolism*
  • Cholestasis / pathology*
  • Disease Models, Animal
  • Gene Expression Regulation
  • Hep G2 Cells
  • Hepatic Stellate Cells / metabolism
  • Hepatic Stellate Cells / pathology
  • Humans
  • Inflammation / pathology
  • LIM-Homeodomain Proteins / deficiency*
  • LIM-Homeodomain Proteins / metabolism
  • Ligation
  • Liver / injuries*
  • Liver / pathology
  • Liver Cirrhosis / pathology
  • Male
  • Mice, Knockout
  • Muscle Proteins / deficiency*
  • Muscle Proteins / metabolism
  • Transcription Factors / deficiency*
  • Transcription Factors / metabolism

Substances

  • Bile Acids and Salts
  • FHL2 protein, human
  • Fhl2 protein, mouse
  • LIM-Homeodomain Proteins
  • Muscle Proteins
  • Transcription Factors