Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.
Keywords: Brassinosteroids; auxin; lateral root development; local signal; nitrate transporter; nitrogen signaling; nutrient efficiency; primary root development; root traits; systemic signal.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.