Neonicotinoids are commonly used for the control of the whitefly Bemisia tabaci in cotton field. Laboratory test and field experiments have found that whitefly has a high risk of developing resistance and cross-resistance to the pesticide. Over expression of cytochrome P450 is one of the main mechanism that controls pesticide resistance in many insects. In this study we use MEAM1 whitefly, the dominant cryptic species of B. tabaci in Xinjiang cotton field, to investigate the possible resistance and cross-resistance mechanism controlled by cytochrome P450 enzymes. The P450 enzyme activity was higher in both selected strains of imidacloprid and acetamipird than that of susceptible strain. Synergism test showed that piperonyl butoxide (PBO) distinctly increased the control efficiency of imidacloprid and acetamiprid to the two resistance selected strains. Four out of 13 cytochrome genes, CYP4CS3, CYP6CX5, CYP6DW2 and CYP6CM1 were significantly up-regulated in the two selected strains based on real-time fluorescence quantitative PCR results. Other 3 genes, CYP6CX2, CYP6CX4 and CYP6DW3 were only highly expressed in the acetamiprid selected strain instead of the susceptible strain and imidacloprid selected strain. CYP6CM1 showed the highest expression level among all the 13 tested genes. No functional mutation of CYP6CM1 was found by sequence analysis. The possible role of these genes involving the resistance and cross-resistance of the whitefly MEAM1 cryptic species against neonicotinoids was discussed.
Keywords: Bemisia tabaci; CYP6CM1; Cross-resistance; Cytochrome P450; Neonicotinoids; Resistance.
Copyright © 2019. Published by Elsevier Inc.