Invasive ductal carcinoma (IDC) is the most common breast cancer. Our study used gene microarray data to select differentially expressed genes between normal and IDC mammary tissues. From these, we selected genes related to the proliferation of tumor cells and compared their prognostic value with known biomarker Ki67 for IDC. Analysis of publicly available Gene Expression Omnibus (GEO) data revealed 24 differentially expressed genes (DEGs) in normal and 31 DEGS in IDC tissues that were used for further analyses. Gene chip analysis software was used to identify DEGs. DEG profiles were confirmed using quantitative PCR (qPCR). DEG functions where shown to be related to cell proliferation. We confirmed MCM3 expression using immunohistochemical staining in 45 IDC patients. The relationship between MCM3 expression and survival was investigated using Kaplan-Meier survival curves and Cox proportional hazard regression models. A total of 1307 differentially expressed genes were identified between IDC and normal tissues, which were enriched in 32 Gene Ontology (GO) terms and 9 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. qPCR demonstrated that both COL1A1 and MCM3 were significantly up-regulated in IDC tissues, of which only MCM3 was related to cell proliferation. Ki67 is closely associated with the tumor grade, ER status, PR status and HER2 status, while MCM3 was shown to relate to tumor size, lymph node, and PR status. There was significant association between survival and MCM3, but not for Ki67. High MCM3 expression demonstrated statistically significant associations with poor prognosis in IDC patients. Findings from the gene microarray data analysis confirmed that MCM3 is associated with the response to cell proliferation. MCM3 represents a better proliferation marker than Ki67 making it a valuable prognostic tool that is independent of ER and HER2 status.
Keywords: Cell proliferation; Gene microarray data; Invasive ductal carcinoma; Ki67; MCM3.