Odorant composition of post-consumer LDPE bags originating from different collection systems

Waste Manag. 2020 Mar 1:104:228-238. doi: 10.1016/j.wasman.2020.01.021. Epub 2020 Jan 24.

Abstract

The establishment of recycling systems aiming at high-quality recyclates from post-consumer plastic waste are essential to avoid the waste of resources. One main impediment for introducing recyclates into the market is their unwanted odor. For this reason, this study aimed at determining if the collection strategy affects the odor profile of post-consumer LDPE bags. Furthermore, the effect of hot water washing, inspired by the conventional mechanical recycling procedure, on the odor of post-consumer LDPE bags was screened. More than 60 odorants were detected in LDPE bags collected in a separate plastic fraction as well as in LDPE bags from the non-separated collection by means of gas chromatography-olfactometry, and 37 of them were unequivocally identified using two-dimensional gas chromatography-mass spectrometry/olfactometry. The sensory results revealed that the type of collection affects the overall odor intensity, the hedonic tone of the odor and the odor profile. Namely, cheesy and fecal smelling odorants were predominant in the waste that had not been separated at source, whereas odorants with earthy and moldy smells showed mostly higher intensity ratings in the waste separated at source. Short chain carboxylic acids, likely originating from microbial spoilage of organic waste, were found with higher dilution factors in the mixed fraction, and could, accordingly, contribute to the observed differences. Additionally, we could show that the hot washing procedure, applied to the LDPE sample from the separate collection system, significantly reduced the overall odor intensity from 8 to 6.3 (0-10 scale). However, the washed waste still showed high smell intensity ratings.

Keywords: Gas chromatography; Odor; Olfactometry; Plastic; Sorting; Waste.

MeSH terms

  • Gas Chromatography-Mass Spectrometry
  • Odorants*
  • Olfactometry
  • Polyethylene*
  • Smell

Substances

  • Polyethylene