Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma

Clin Cancer Res. 2020 Jun 1;26(11):2626-2639. doi: 10.1158/1078-0432.CCR-19-0803. Epub 2020 Jan 27.

Abstract

Purpose: Mesenchymal stem cells (MSCs) show an inherent brain tumor tropism that can be exploited for targeted delivery of therapeutic genes to invasive glioma. We assessed whether a motile MSC-based local immunomodulation is able to overcome the immunosuppressive glioblastoma microenvironment and to induce an antitumor immune response.

Experimental design: We genetically modified MSCs to coexpress high levels of IL12 and IL7 (MSCIL7/12, Apceth-301). Therapeutic efficacy was assessed in two immunocompetent orthotopic C57BL/6 glioma models using GL261 and CT2A. Immunomodulatory effects were assessed by multicolor flow cytometry to profile immune activation and exhaustion of tumor-infiltrating immune cells. Diversity of the tumor-specific immune response as analyzed using T-cell receptor sequencing.

Results: Intratumoral administration of MSCIL7/12 induced significant tumor growth inhibition and remission of established intracranial tumors, as demonstrated by MR imaging. Notably, up to 50% of treated mice survived long-term. Rechallenging of survivors confirmed long-lasting tumor immunity. Local treatment with MSCIL7/12 was well tolerated and led to a significant inversion of the CD4+/CD8+ T-cell ratio with an intricate, predominantly CD8+ effector T-cell-mediated antitumor response. T-cell receptor sequencing demonstrated an increased diversity of TILs in MSCIL7/12-treated mice, indicating a broader tumor-specific immune response with subsequent oligoclonal specification during generation of long-term immunity.

Conclusions: Local MSC-based immunomodulation is able to efficiently alter the immunosuppressive microenvironment in glioblastoma. The long-lasting therapeutic effects warrant a rapid clinical translation of this concept and have led to planning of a phase I/II study of apceth-301 in recurrent glioblastoma.

MeSH terms

  • Animals
  • Brain Neoplasms / immunology
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Brain Neoplasms / therapy*
  • Glioblastoma / immunology
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Glioblastoma / therapy*
  • Immunomodulation*
  • Interleukins / metabolism*
  • Mesenchymal Stem Cell Transplantation / methods*
  • Mesenchymal Stem Cells / cytology*
  • Mice
  • Mice, Inbred C57BL
  • Tumor Cells, Cultured
  • Tumor Microenvironment / immunology*

Substances

  • Interleukins