Polymer-based emitters are a promising route to the production of low-cost, scalable solution-processable luminescent materials. Here we describe a series of acrylic oxadiazole-based donor-acceptor monomers with tunable emission from blue to orange, with quantum yields as high as 96%. By introducing structural constraints that limit donor-acceptor orbital overlap, thermally activated delayed fluorescence (TADF) was observed in these materials. Polymerization by Cu(0) reversible deactivation radical polymerization (RDRP) gave high-molecular-weight copolymers (Mn > 20 kDa) with dispersities ranging from 1.10 to 1.45, using a room-temperature procedure with Cu wire as a catalyst. One of these materials, which had phenothiazine as donor moiety, exhibited conformationally dependent dual emission, giving a mixture of prompt fluorescence and delayed fluorescence peaks, whose relative ratios varied based on the amount of O2 present during measurement. We demonstrate that this material can combine prompt and delayed fluorescence to act as a single-component, all-organic, ratiometric oxygen sensor without external calibrant. Application to ratiometric oxygen sensing is demonstrated both using a polymer thin film and via incorporation of this material into water-soluble polymer dots (Pdots), with a ratiometric response to O2 throughout the range of partial pressures relevant to biological environments.
Keywords: Cu(0)-RDRP; dual emission; oxygen sensing; polymer dots; thermally activated delayed fluorescence.