Aryl hydrocarbon receptor (AHR) is an essential regulator of gut immunity and a promising therapeutic target for inflammatory bowel disease (IBD). Current AHR agonists are inadequate for clinical translation due to low activity, inadequate pharmacokinetics, or toxicity. We synthesized a structurally diverse library and used integrated computational and experimental studies to discover mechanisms governing ligand-receptor interaction and to design potent drug leads PY109 and PY108, which display physiochemical drug-likeness properties, desirable pharmacokinetic profiles, and low toxicity. In a murine model of dextran sulfate sodium-induced colitis, orally administered compounds increase interleukin-22 (IL-22) production and accelerate mucosal healing by modulating mucosal adaptive and innate lymphoid cells. AHR and IL-22 pathway induction was confirmed using RNA sequencing and characterization of the lymphocyte protein-protein interaction network. Significant induction of IL-22 was also observed using human T cells from patients with IBD. Our findings support rationally designed AHR agonists for IBD therapy.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).