Jointly Inferring the Dynamics of Population Size and Sampling Intensity from Molecular Sequences

Mol Biol Evol. 2020 Aug 1;37(8):2414-2429. doi: 10.1093/molbev/msaa016.

Abstract

Estimating past population dynamics from molecular sequences that have been sampled longitudinally through time is an important problem in infectious disease epidemiology, molecular ecology, and macroevolution. Popular solutions, such as the skyline and skygrid methods, infer past effective population sizes from the coalescent event times of phylogenies reconstructed from sampled sequences but assume that sequence sampling times are uninformative about population size changes. Recent work has started to question this assumption by exploring how sampling time information can aid coalescent inference. Here, we develop, investigate, and implement a new skyline method, termed the epoch sampling skyline plot (ESP), to jointly estimate the dynamics of population size and sampling rate through time. The ESP is inspired by real-world data collection practices and comprises a flexible model in which the sequence sampling rate is proportional to the population size within an epoch but can change discontinuously between epochs. We show that the ESP is accurate under several realistic sampling protocols and we prove analytically that it can at least double the best precision achievable by standard approaches. We generalize the ESP to incorporate phylogenetic uncertainty in a new Bayesian package (BESP) in BEAST2. We re-examine two well-studied empirical data sets from virus epidemiology and molecular evolution and find that the BESP improves upon previous coalescent estimators and generates new, biologically useful insights into the sampling protocols underpinning these data sets. Sequence sampling times provide a rich source of information for coalescent inference that will become increasingly important as sequence collection intensifies and becomes more formalized.

Keywords: Bayesian phylogenetics; bison; coalescent processes; demographic inference; influenza; sampling models; skyline plots.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Animals
  • Bison / genetics
  • Humans
  • Influenza A virus / genetics
  • Models, Genetic*
  • Population Density*
  • Population Dynamics*