Oxidative stress ecology in brook trout (Salvelinus fontinalis) from a high-mountain lake (Cottian Alps)

Sci Total Environ. 2020 May 1:715:136946. doi: 10.1016/j.scitotenv.2020.136946. Epub 2020 Jan 25.

Abstract

High-mountain lakes are pristine ecosystems characterized by extreme environmental conditions. The atmospheric transport of pollutants from lowlands may add further stress to organisms inhabiting these environments. We investigated the environmental stress pressure on brook trout (Salvelinus fontinalis) from a high-mountain lake in the Cottian Alps (Piedmont, northwest Italy). To do this, males and females of brook trout were sampled from Balma Lake in summer (August) and autumn (October) 2017 in order to assess the influence of trace elements accumulation and environmental parameters (physicochemical parameters and nutrient characteristics of water) on oxidative stress biomarkers. Bioaccumulation of Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Se, and Zn and metallothionein levels were measured in muscle tissue of males and females. Liver, gills, kidney, and spleen tissue samples were analyzed for superoxide dismutase, catalase, total glutathione peroxidase, selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione S-transferase activity. Analysis of environmental parameters showed changes in biomarker levels with seasonal variations. Water temperature was significantly higher in summer than autumn (Wilcoxon test; p = .0078), while pH was significantly higher in autumn than in summer (Wilcoxon test; p = .0078). Sex-related differences in oxidative stress biomarkers in tissues were unremarkable, whereas seasonal variability of oxidative stress biomarkers was observed, with major differences occurred for liver in summer and for gills, kidney, spleen and muscle in autumn. Positive correlations between environmental parameters and biomarkers were noted. Major fluctuations in water temperature, pH, Cu, Pb and Hg produced changes in biomarker levels; however, increased food intake during the ice-free season was probably the main factor that influenced changes in oxidative stress biomarker levels in brook trout in this extreme ecosystem.

Keywords: Alpine lakes; Extreme ecosystems; Oxidative stress biomarkers; Trace elements.

MeSH terms

  • Animals
  • Ecosystem
  • Female
  • Italy
  • Lakes*
  • Male
  • Oxidative Stress*
  • Trout
  • Water Pollutants, Chemical

Substances

  • Water Pollutants, Chemical