Stored waveform inverse Fourier transform (SWIFT) is a versatile method to generate complex isolation/ejection waveforms for precursor isolation prior to tandem mass spectrometry experiments. Here, we report ultrahigh resolving power ion isolation by SWIFT on a 21 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Individual histone proteoforms are isolated (0.6 m/z isolation window) with near 100% efficiency using a 52 ms SWIFT isolation, followed by in-cell fragmentation by ultraviolet photodissociation (UVPD). Ion isolation resolving power of 175 000 (m/Δm) is demonstrated by isolation of individual peaks at a spacing of 0.0034 Da at m/z 597 from a complex mixture of Canadian bitumen. An individual m/z ion, which corresponds to a single elemental composition, from a complex mixture is isolated and fragmented by infrared multiphoton dissociation (IRMPD). Theoretical and experimental considerations that limit achievable ion isolation resolving power are discussed.