Objective: We sought to compare intraoperative surgical instrumentation techniques with image-guidance versus robotic-guided procedures for posterior spinal fusion.
Methods: A retrospective review of institutional data collected from a single surgeon was used to compare surgical outcomes between O-arm neuronavigation and the Mazor X robotic-assistance system for placement of posterior spinal instrumentation in a consecutive series of patients. Univariate statistical significance testing compared time spent in the operating room, blood loss, screw accuracy, and wound healing.
Results: Between January 2017 and February 2019, 46 O-arm cases (mean age 59.6 years ± 13.7 years) and 39 Mazor X cases (mean age 59.5 years ± 12.4 years) were conducted. Cases were classified as degenerative, infectious, oncologic, and trauma with a mean of 4.57 and 5.43 levels operated on using O-arm neuronavigation and Mazor X, respectively. Mean operative times (P = 0.124), estimated blood loss (P = 0.212), wound revision rates (P = 0.560), and clinically acceptable instrumentation placement (P = 0.076) did not demonstrate significance between the 2 groups. However, screw placement was significantly more accurate and precise (P = 1 × 10-9) with robotic assistance when considering Gertzbein-Robbins A placement.
Conclusions: Although a trend toward greater accuracy was noticed with robotic technology when determining clinically acceptable screws, there was not a significant difference when compared with O-arm neuronavigation. However, robotic technology has a significant effect on both precision and accuracy in Gertzbein-Robbins A screw placement. Robotics does not have a clear advantage when discussing infection rates, intraoperative blood loss, or operative time.
Keywords: Mazor X; Neuronavigation; O-arm; Robotics; Spine.
Copyright © 2020 Elsevier Inc. All rights reserved.