Discordances between molecular assays for rifampicin resistance in Mycobacterium tuberculosis: frequency, mechanisms and clinical impact

J Antimicrob Chemother. 2020 May 1;75(5):1123-1129. doi: 10.1093/jac/dkz564.

Abstract

Background: Molecular assays are endorsed for detection and confirmation of rifampicin-resistant TB. The frequency, causal mechanisms and impact of discordant results between molecular tests are not well understood.

Methods: The prevalence of discordant results was determined by pairwise comparison of molecular test results in a cohort of 749 rifampicin-resistant TB patients in three South African provinces. Culture isolates were sent to a research laboratory for WGS and rifampicin MIC determination. Clinical information was collected through medical file review.

Results: The prevalence of discordances between Xpert MTB/RIF and MTBDRplus was 14.5% (95% CI 10.9%-18.9%), 5.6% (95% CI 2.2%-13.4%) between two consecutive Xpert assays and 4.2% (95% CI 2.2%-7.8%) between two consecutive MTBDRplus assays. Likely mechanisms of discordances were false rifampicin susceptibility on MTBDRplus (due to variants not included in mutant probes or heteroresistance with loss of minor variants in culture), false resistance on molecular assay in rifampicin-susceptible isolates, and human error. The healthcare worker changed the treatment regimen in 33% of patients with discordant results and requested 232 additional molecular tests after a first confirmatory test was performed in 460 patients. A follow-up Xpert assay would give the healthcare worker the 'true' rifampicin-resistant TB diagnosis in at least 73% of discordant cases.

Conclusions: The high rate of discordant results between Xpert and MTBDRplus has important implications for the laboratory, clinician and patient. While root causes for discordant result are multiple, a follow-up Xpert assay could guide healthcare workers to the correct treatment in most patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibiotics, Antitubercular* / pharmacology
  • Drug Resistance, Bacterial
  • Humans
  • Mycobacterium tuberculosis* / genetics
  • Rifampin / pharmacology
  • Sensitivity and Specificity
  • Tuberculosis, Multidrug-Resistant* / diagnosis
  • Tuberculosis, Multidrug-Resistant* / drug therapy
  • Tuberculosis, Multidrug-Resistant* / epidemiology

Substances

  • Antibiotics, Antitubercular
  • Rifampin