Interleukin-17A (IL-17A) is a major mediator of tissue inflammation in many autoimmune diseases. Anti-IL-17A is an effective treatment for psoriasis and is showing promise in clinical trials in multiple sclerosis. In this study, we find that IL-17A-defective mice or mice treated with anti-IL-17A at induction of experimental autoimmune encephalomyelitis (EAE) are resistant to disease and have defective priming of IL-17-secreting γδ T (γδT17) cells and Th17 cells. However, T cells from Il17a-/- mice induce EAE in wild-type mice following in vitro culture with autoantigen, IL-1β, and IL-23. Furthermore, treatment with IL-1β or IL-17A at induction of EAE restores disease in Il17a-/- mice. Importantly, mobilization of IL-1β-producing neutrophils and inflammatory monocytes and activation of γδT17 cells is reduced in Il17a-/- mice. Our findings demonstrate that a key function of IL-17A in central nervous system (CNS) autoimmunity is to recruit IL-1β-secreting myeloid cells that prime pathogenic γδT17 and Th17 cells.
Keywords: IL-17; IL-1β; Th17 cells; autoimmunity; experimental autoimmune encephalomyelitis; inflammatory monocyte; multiple sclerosis; neutrophil; γδ T cells.
Copyright © 2020 Elsevier Inc. All rights reserved.