More than 160 arginine analogues modified on the C-terminus via either an amide bond or a heterocyclic moiety (1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,4-triazole) were prepared as potential inhibitors of NO synthases (NOS). A methodology involving formation of a thiocitrulline intermediate linked through its side-chain on a solid support followed by modification of its carboxylate group was developed. Finally, the side-chain thiourea group was either let unchanged, S-alkylated (Me, Et) or guanidinylated (Me, Et) to yield respectively after TFA treatment the corresponding thiocitrulline, S-Me/Et-isothiocitrulline and N-Me/Et-arginine substrate analogues. They all were tested against three recombinant NOS isoforms. Several compounds containing a S-Et- or a S-Me-Itc moiety and mainly belonging to both the dipeptide-like and 1,2,4-oxadiazole series were shown to inhibit nNOS and iNOS with IC50 in the 1-50 μM range. Spectral studies confirmed that these new compounds interacted at the heme active site. The more active compounds were found to inhibit intra-cellular iNOS expressed in RAW264.7 and INS-1 cells with similar efficiency than the reference compounds L-NIL and SEIT.
Keywords: NO synthase inhibitors; arginine; heterocycles; solid-phase synthesis; thiocitrulline.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.