Background: Circulating tumour cells (CTCs) can be assessed through a minimally invasive blood sample with potential utility as a predictive, prognostic and pharmacodynamic biomarker. The large heterogeneity of melanoma CTCs has hindered their detection and clinical application.
Methods: Here we compared two microfluidic devices for the recovery of circulating melanoma cells. The presence of CTCs in 43 blood samples from patients with metastatic melanoma was evaluated using a combination of immunocytochemistry and transcript analyses of five genes by RT-PCR and 19 genes by droplet digital PCR (ddPCR), whereby a CTC score was calculated. Circulating tumour DNA (ctDNA) from the same patient blood sample, was assessed by ddPCR targeting tumour-specific mutations.
Results: Our analysis revealed an extraordinary heterogeneity amongst melanoma CTCs, with multiple non-overlapping subpopulations. CTC detection using our multimarker approach was associated with shorter overall and progression-free survival. Finally, we found that CTC scores correlated with plasma ctDNA concentrations and had similar pharmacodynamic changes upon treatment initiation.
Conclusions: Despite the high phenotypic and molecular heterogeneity of melanoma CTCs, multimarker derived CTC scores could serve as viable tools for prognostication and treatment response monitoring in patients with metastatic melanoma.