A large field-of-view and fast scanning of photoacoustic microscopy (PAM) relatively have been difficult to obtain due to the water-drowned structure of the system for the transmission of ultrasonic signals. Researchers have widely studied the achievement of a waterproof scanner for dynamic biological applications with a high-resolution and high signal-to-noise ratio. This Letter reports a novel, to the best of our knowledge, waterproof galvanometer scanner-based PAM system with a successfully attainable ${9.0}\;{\rm mm} \times {14.5}\;{\rm mm}$9.0mm×14.5mm scan region, amplitude scan rate of 40 kHz, and spatial resolution of 4.9 µm. The in vivo characterization of a mouse brain in intact-skull microvascular visualization demonstrated its capability in biomedical imaging and is anticipated to be an effective technique for various preclinical and clinical studies.