Protein Footprinting: Auxiliary Engine to Power the Structural Biology Revolution

J Mol Biol. 2020 Apr 17;432(9):2973-2984. doi: 10.1016/j.jmb.2020.02.011. Epub 2020 Feb 21.

Abstract

Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, "footprinting" studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures and interactions or understanding the dynamics of structures in the context of ligand binding or assembly. In this perspective, we review the use of protein footprinting to extend our understanding of macromolecular systems, particularly for systems challenging for analysis by other techniques, such as intrinsically disordered proteins, amyloidogenic proteins, and other proteins/complexes so far recalcitrant to existing methods. We also illustrate how the availability of high-resolution structural information can be a foundation for a suite of hybrid approaches to divine structure-function relationships beyond what individual techniques can deliver.

Keywords: footprinting; hybrid methods; mass spectrometry; proteins; structural biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Amyloidogenic Proteins / chemistry
  • Cryoelectron Microscopy
  • Crystallography, X-Ray
  • Humans
  • Intrinsically Disordered Proteins / chemistry
  • Models, Molecular
  • Multiprotein Complexes / chemistry
  • Protein Conformation
  • Protein Footprinting / methods*
  • Proteins / chemistry*

Substances

  • Amyloidogenic Proteins
  • Intrinsically Disordered Proteins
  • Multiprotein Complexes
  • Proteins