Self-activated in vivo therapeutic cascade of erythrocyte membrane-cloaked iron-mineralized enzymes

Theranostics. 2020 Jan 12;10(5):2201-2214. doi: 10.7150/thno.39621. eCollection 2020.

Abstract

Biomineralization of enzymes for in vivo diagnosis and treatment of diseases remain a considerable challenge, due to their severe reaction conditions and complicated physiological environment. Herein, we reported a biomimetic enzyme cascade delivery nanosystem, tumor-targeted erythrocyte membrane (EM)-cloaked iron-mineralized glucose oxidases (GOx-Fe0@EM-A) for enhancing anticancer efficacy by self-activated in vivo cascade to generate sufficient high toxic •OH at tumor site. Methods: An ultra-small Fe0 nanoparticle (Fe0NP) was anchored in the inner cavity of glucose oxidase (GOx) to form iron-mineralized glucose oxidase (GOx-Fe0) as a potential tumor therapeutic nanocatalyst. Moreover, erythrocyte membrane cloaking delivery of GOx-Fe0in vivo was designed to effectively accumulate ultra-small GOx-Fe0 at tumor site. Results: GOx-Fe0@EM-A had satisfactory biocompatibility and light-trigged release efficiency. Erythrocyte membrane cloaking of GOx-Fe0@EM-A not only prolongs blood circulation but also protects in vivo enzyme activity of GOx-Fe0; Tumor targeting of GOx-Fe0@EM-A endowed preferential accumulation at tumor site. After NIR light irradiation at tumor site, erythrocyte membrane of GOx-Fe0@EM-A was ruptured to achieve light-driven release and tumor deep penetration of ultra-small nanosize GOx-Fe0 by the photothermal effect of ICG. Then, GOx-Fe0 occurred self-activated in vivo cascade to effectively eradicate tumor by producing the highly cumulative and deeply penetrating •OH at tumor site. Conclusion: Tumor-targeted erythrocyte membrane-cloaked iron-mineralized glucose oxidase (GOx-Fe0@EM-A) exhibits a promising strategy for striking antitumor efficacy by light-driven tumor deep penetration and self-activated therapeutic cascade.

Keywords: enzyme biohybrid; erythrocyte membrane cloaking; light-driven pinpoint release; self-activated therapeutic cascade; tumor-enhanced penetration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomimetics
  • Biomineralization
  • Cell Line, Tumor / metabolism
  • Cell Line, Tumor / radiation effects
  • Disease Models, Animal
  • Erythrocyte Membrane / drug effects*
  • Erythrocyte Membrane / enzymology
  • Erythrocyte Membrane / metabolism
  • Female
  • Glucose Oxidase / metabolism*
  • Humans
  • Iron / chemistry*
  • Metal-Organic Frameworks / chemistry
  • Metal-Organic Frameworks / pharmacology
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles / chemistry
  • Nanoparticles / therapeutic use
  • Trace Elements / chemistry
  • Xenograft Model Antitumor Assays

Substances

  • Metal-Organic Frameworks
  • Trace Elements
  • Iron
  • Glucose Oxidase