Hollow FeP/Fe3O4 Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction

ACS Appl Mater Interfaces. 2020 Mar 18;12(11):12783-12792. doi: 10.1021/acsami.9b21927. Epub 2020 Mar 9.

Abstract

We develop a method to prepare hollow FeP/Fe3O4 hybrid nanoparticles supported on carbon nanotubes (CNTs), which could be used as highly active and efficient electrocatalysts. The Fe@Fe3O4/CNT hybrids were first synthesized by annealing the CNTs adsorbed with Fe(NO3)3, followed by controlled phosphorization treatment. They exhibit an outstanding catalytic activity for oxygen evolution reaction (OER) with a low overpotential of 229 mV at a current density of 10 mA cm-2, a high turnover frequency value of 0.35 s-1 at an overpotential of 300 mV, and an ultralow Tafel slope of 27.6 mV dec-1, which is much better than that of FeP/Fe3O4, FeP/CNTs, Fe3O4/CNTs, and the commercial RuO2 electrocatalyst. More importantly, the Tafel slope is much lower than most non-noble metal-based OER electrocatalysts reported in the previous literature studies as far as we know. The excellent OER performance benefits from the electron transfer from Fe3O4 to FeP confirmed by X-ray photoelectron spectroscopy, together with good conductivity of CNTs. This hybrid structure supported on conductive CNTs may offer an efficient method to design earth-abundant and low-cost electrocatalysts for OER in practical applications.

Keywords: CNTs; FeP/Fe3O4; Tafel slope; electrocatalyst; hollow hybrid nanoparticles.