Role of Anions and Mixtures of Anions on the Thermochromism, Vapochromism, and Polymorph Formation of Luminescent Crystals of a Single Cation, [(C6H11NC)2Au]

J Am Chem Soc. 2020 Mar 25;142(12):5689-5701. doi: 10.1021/jacs.9b13168. Epub 2020 Mar 13.

Abstract

Noncoordinating anions, which generally play a subordinate role in coordination chemistry, alter the structure, the luminescence, as well as the thermochromic and vapochromic behaviors of salts of the two-coordinate cation, [(C6H11NC)2Au]+. Thus whereas the yellow polymorphs of [(C6H11NC)2Au](PF6) and [(C6H11NC)2Au](AsF6) contain single chains of cations and are vapochromic, yellow [(C6H11NC)2Au](SbF6) does not form the same polymorph and is not vapochromic but contains two distinct chains of cations connected through aurophilic interactions. Mixed crystals such as [(C6H11NC)2Au](PF6)0.50(AsF6)0.50 have been prepared by adding diethyl ether to a dichloromethane solution containing equimolar amounts of [(C6H11NC)2Au](PF6) and [(C6H11NC)2Au](AsF6). The initial (kinetic) product for the three combinations of anions ((PF6)-/(AsF6)-, (PF6)-/(SbF6)-, and (AsF6)-/(SbF6)-) was a precipitate of fine yellow needles with a green emission, which were gradually transformed at rates that depended on the anions present into colorless crystals with a blue emission. Whereas neither polymorph of [(C6H11NC)2Au](PF6) nor [(C6H11NC)2Au](SbF6) is thermochromic, the colorless mixed crystal [(C6H11NC)2Au](PF6)0.50(SbF6)0.50 is thermochromic and converts from blue-emitting to green-emitting at 87-95 °C. The temperature required to transform a crystal of the type [(C6H11NC)2Au](PF6)n(AsF6)1-n from colorless (blue-emitting) to yellow (green-emitting) increases as the fraction of hexafluorophosphate ion in the crystal increases. The yellow crystals of [(C6H11NC)2Au](PF6)0.75(AsF6)0.25, [(C6H11NC)2Au](PF6)0.50(AsF6)0.50, and [(C6H11NC)2Au](PF6)0.25(AsF6)0.75 are vapochromic, whereas the yellow crystals of [(C6H11NC)2Au](PF6)0.50(SbF6)0.50 and [(C6H11NC)2Au](AsF6)0.50(SbF6)0.50 are not.