Influence of operator experience, scanner type, and scan size on 3D scans

J Prosthet Dent. 2021 Feb;125(2):294-299. doi: 10.1016/j.prosdent.2019.12.011. Epub 2020 Feb 27.

Abstract

Statement of problem: Intraoral scanners (IOSs) have some inherent distortions caused by optical and/or software imperfections. However, how other factors such as operator experience, scan time, scanner type, and scan size influence scan accuracy is not clear.

Purpose: The purpose of this in vitro study was to evaluate the trueness and precision of scans performed by 3 professionals with different levels of experience by using 2 IOSs.

Material and methods: Three operators with low, medium, and high levels of experience scanned a master model 10 times by using 2 IOSs (CEREC Omnicam; Dentsply Sirona and TRIOS 3; 3Shape), resulting in 10 standard tessellation language files for each group (N=60). Each standard tessellation language file was divided into 2 areas (prepared teeth and complete arch). Precision was evaluated by comparing the 10 scans from each examiner for each system. Trueness was evaluated by comparing each scan file with a reference scan obtained from a laboratory scanner (D2000; 3Shape). A 3D analysis software program (Geomagic Control; 3D Systems) was used to perform all the comparisons and superimpositions. The 3-way ANOVA test followed by the Tukey HSD test were used to assess precision and trueness. The 2-way ANOVA followed by the Tukey HSD test was used to assess scan time. The Pearson correlation test was performed between scan time and trueness for both scanners. An additional correlation was performed between scan time and number of images, as well as between number of images and trueness for the TRIOS 3.

Results: Statistically significant influences of operator (P<.001), scanner (P<.001), scan size (P<.001), operator and scan size (P<.001), and scanner and scan size (P<.001) were observed. The TRIOS 3 group reported higher precision than the CEREC Omnicam group for complete-arch scans (P<.001), although no difference was observed for scans of the prepared tooth. Medium- (P=.002) and low-experience operators (P<.001) reported lower precision for complete-arch scans performed with CEREC Omnicam when compared with TRIOS 3. The low-experience operator reported significantly worse results for complete-arch scans in comparison with the medium- (P=.008 and P<.001) and high-experience operators (P<.001 and P=.001), by using TRIOS 3 and CEREC Omnicam, respectively. Medium- and high-experience operators reported similar results among themselves. The CEREC Omnicam scanner reported lower trueness for complete-arch scans when compared with the prepared tooth (P<.001); for TRIOS 3, a difference was only observed for the low-experience operator when compared with the high-experience operator (P<.001). The CEREC Omnicam reported lower trueness than the TRIOS 3, except for the medium-experience operator with the prepared tooth scan. Comparing the trueness between operators and considering the same scanner and scan size, all groups were similar. The low-experience operator had a longer scanning time than the medium- and high-experience operators. For TRIOS 3, the low-experience operator obtained the highest number of images during each scan.

Conclusions: The accuracy of intraoral scans was influenced by operator experience, type of IOSs, and scan size. More experienced operators and smaller scan sizes made for more accurate scans. In addition, more experienced operators made faster scans, and the TRIOS 3 was more accurate than the CEREC Omnicam for complete-arch scans.

MeSH terms

  • Computer-Aided Design
  • Dental Arch
  • Dental Impression Technique*
  • Imaging, Three-Dimensional
  • Models, Dental*