Response of bacterial regrowth, abundant and rare bacteria and potential pathogens to secondary chlorination in secondary water supply system

Sci Total Environ. 2020 Jun 1:719:137499. doi: 10.1016/j.scitotenv.2020.137499. Epub 2020 Feb 24.

Abstract

This study investigated the effects of secondary chlorination on bacterial regrowth, microbial communities (abundant and rare taxa) and bacterial functions of pipe wall biofilm and bulk water in simulated secondary water supply system (SWSS). Continuous secondary chlorination was more effective than short-term secondary chlorination to control the bacterial regrowth in both biofilm and water samples. Bacterial diversity slightly reduced after continuous secondary chlorination, and 19.27% of the total operational taxonomic units (OTUs) were shared by biofilm and water samples, with Bacillus as the dominant genus. Abundant and rare taxa exhibited different community structures. Proteobacteria and candidate division WPS-1 predominated in abundant and rare phyla were sensitive to chlorine, while Firmicutes, Acidobacteria and Bacteroidetes, exhibited relative strong chlorine resistance. The abundant genera in control sample (e.g., Bosea, Sphingobium and Gemmata) exhibited poor tolerance to chlorine, while Bacillus in biofilm and Defluviimonas in water were the main chlorine-resistant genera. Moreover, the composition of rare genera in each sample was obviously different. Furthermore, a total of 18 potential pathogens were detected with Pseudomonas as the dominant genus, most of which were significantly reduced after disinfection. There were mainly positive interactions among potential pathogenic bacteria, with Enterococcus, Legionella and Vibrio as the hub genera as revealed by network analysis. Similar bacterial functions in both biofilm and water were observed with metabolism as the predominant bacterial function, while, human disease function only accounted for 1.07% of bacterial functions. These results highlighted the importance of continuous secondary chlorination for controlling biosafety of SWSS and identified the dissimilar responses of abundant and rare bacteria to the disinfection, as well as the co-occurrence patterns among potential pathogens, improving our understanding of bacterial communities in SWSS.

Keywords: Abundant taxa; Bacterial functions; Potential pathogens; Rare taxa; Secondary chlorination; Secondary water supply system.

MeSH terms

  • Bacteria
  • Disinfection
  • Halogenation*
  • Water
  • Water Supply

Substances

  • Water