Sulfonamide-Based Azaheterocyclic Schiff Base Derivatives as Potential Carbonic Anhydrase Inhibitors: Synthesis, Cytotoxicity, and Enzyme Inhibitory Kinetics

Biomed Res Int. 2020 Feb 20:2020:8104107. doi: 10.1155/2020/8104107. eCollection 2020.

Abstract

A series of sulfonamide-bearing azaheterocyclic Schiff base derivatives 3(a-j) were synthesized as carbonic anhydrase inhibitors. The substituted benzene sulfonyl chlorides 1(a-d) were reacted with N2H4 to get aromatic sulfonyl hydrazides 2(a-d). The intermediate hydrazides 2(a-d) were treated with substituted aldehydes to afford azaheterocyclic sulfonamide Schiff bases 3(a-j). The spectral data of synthesized compounds confirmed the formation of the final products. The inhibitory effects of 3(a-j) on carbonic anhydrase activity were determined, and it was found that derivative 3c exhibited the most potent activity with IC500.84 ± 0.12 μM among all other derivatives and is also more active than standard acetazolamide (IC500.91 ± 0.12). The enzyme inhibitory kinetics results determined by Lineweaver-Burk plots revealed that compound 3c inhibits the enzyme by noncompetitive mode of inhibition with K i value 8.6 μM. The molecular docking investigations of the synthesized analogues 3(a-j) were evaluated which assured that synthesized compounds bind well inside the active binding site of the target enzyme. Cytotoxicity on human keratinocyte (HaCaT) and MCF-7 cell lines was performed, and it was found that most of the synthesized analogues were nontoxic on these cell lines and the toxic effects follow the dose-dependent manner. Based on our investigations, it was suggested that analogue 3c may serve as core structure to project carbonic anhydrase inhibitors with greater potency.

MeSH terms

  • Acetazolamide
  • Carbonic Anhydrase Inhibitors* / chemical synthesis
  • Carbonic Anhydrase Inhibitors* / chemistry
  • Carbonic Anhydrase Inhibitors* / pharmacology
  • Carbonic Anhydrases / drug effects
  • Carbonic Anhydrases / metabolism
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Humans
  • Kinetics
  • MCF-7 Cells
  • Molecular Docking Simulation
  • Schiff Bases*
  • Sulfonamides*

Substances

  • Carbonic Anhydrase Inhibitors
  • Schiff Bases
  • Sulfonamides
  • Carbonic Anhydrases
  • Acetazolamide