Probabilistic Estimation of Fatigue Strength for Axial and Bending Loading in High-Cycle Fatigue

Materials (Basel). 2020 Mar 5;13(5):1148. doi: 10.3390/ma13051148.

Abstract

In this paper, the sensitivity to the type of loads (axial and bending loading) of selected construction materials (AW6063 T6 aluminum alloy, S355J2+C structural steel, and 1.4301 acid-resistant steel) in high-cycle fatigue was verified. The obtained S-N fatigue characteristics were described by a probabilistic model of the 3-parameters Weibull cumulative distribution function. The main area of research concerned the correct implementation of the weakest link theory model. The theory is based on a highly-stressed surface area and a highly-stressed volume in the region of the highest stresses. For this purpose, an analytical model and a numerical model based on the finite element method were used. The model that gives the lowest error implemented in specific test conditions was determined on the basis of high-cycle fatigue analysis. For the analyzed materials, it was a highly-stressed volume model based on the weakest link theory.

Keywords: Weibull distribution; axial loading; high-cycle fatigue; rotary bending.