Shortening delivery times for intensity-modulated proton therapy by reducing the number of proton spots: an experimental verification

Phys Med Biol. 2020 May 11;65(9):095008. doi: 10.1088/1361-6560/ab7e7c.

Abstract

Delivery times of intensity-modulated proton therapy (IMPT) can be shortened by reducing the number of spots in the treatment plan, but this may affect clinical plan delivery. Here, we assess the experimental deliverability, accuracy and time reduction of spot-reduced treatment planning for a clinical case, as well as its robustness. For a single head-and-neck cancer patient, a spot-reduced plan was generated and compared with the conventional clinical plan. The number of proton spots was reduced using the iterative 'pencil beam resampling' technique. This involves repeated inverse optimization, while adding in each iteration a small sample of randomly selected spots and subsequently excluding low-weighted spots until plan quality deteriorates. Field setup was identical for both plans and comparable dosimetric quality was a prerequisite. Both IMPT plans were delivered on PSI Gantry 2 and measured in water, while delivery log-files were used to extract delivery times and reconstruct the delivered dose via Monte-Carlo dose calculations. In addition, robustness simulations were performed to assess sensitivity to machine inaccuracies and errors in patient setup and proton range. The number of spots was reduced by 96% (from 33 855 to 1510 in total) without compromising plan quality. The spot-reduced plan was deliverable on our gantry in standard clinical mode and resulted in average delivery times per field being shortened by 46% (from 51.2 to 27.6 s). For both plans, differences between measured and calculated dose were within clinical tolerance for patient-specific verifications and Monte-Carlo dose reconstructions were in accordance with clinical experience. The spot-reduced plan was slightly more sensitive to machine inaccuracies, but more robust against setup and range errors. In conclusion, for an example head-and-neck case, spot-reduced IMPT planning provided a deliverable treatment plan and enabled considerable shortening of the delivery time (∼50%) without compromising plan quality or delivery accuracy, and without substantially affecting robustness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Head and Neck Neoplasms / radiotherapy*
  • Humans
  • Proton Therapy / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Intensity-Modulated / methods*
  • Time Factors