To facilitate precise and convenient control of biological sample temperature, we developed a low-cost device that can be used independently or with any stereomicroscope. The purpose of the device is to control the thermal environment during experimental intervals in which a specimen must be manipulated outside of an incubator, e.g. for dissection or slide-mounting in preparation for imaging. Sample temperatures can be both cooled to below and heated to above room temperatures, and stably maintained at a precision of +/- 0.1˚C. To demonstrate the utility of this device, we report improved characterization of the penetrance of a short-acting temperature-sensitive allele in C. elegans embryos, and identification of the upper temperature threshold for embryonic viability for six Caenorhabditis species. By controlling the temperature environment even as a specimen is manipulated, this device offers consistency and flexibility, reduces environmental noise, and enables precision timing in experiments requiring temperature shifts.