Aegilops comosa and Ae. markgrafii are diploid progenitors of polyploidy species of Aegilops sharing M and C genomes, respectively. Transferring valuable genes/traits from Aegilops into wheat is an alternative strategy for wheat genetic improvement. The amphidiploids between diploid species of Aegilops and tetraploid wheat can act as bridges to overcome obstacles from direct hybridization and can be developed by the union of unreduced gametes. In this study, we developed seven Triticum turgidum - Ae. comosa and two T. turgidum - Ae. markgrafii amphidiploids. The unreduced gametes mechanisms, including first-division restitution (FDR) and single-division meiosis (SDM), were observed in triploid F1 hybrids of T. turgidum - Ae. comosa (STM) and T. turgidum - Ae. markgrafii (STC). Only FDR was observed in STC hybrids, whereas FDR or both FDR and SDM were detected in the STM hybrids. All seven pairs of M chromosomes of Ae. comosa and C chromosomes of Ae. markgrafii were distinguished by fluorescent in situ hybridization (FISH) probes pSc119.2 and pTa71 combinations with pTa-535 and (CTT)12/(ACT)7, respectively. Meanwhile, the chromosomes of tetraploid wheat and diploid Aegilops parents were distinguished by the same FISH probes. The amphidiploids possessed specific valuable traits such as multiple tillers, large seed size related traits, and stripe rust resistance that could be utilized in the genetic improvement of wheat.
Keywords: Aegilops; C and M genomes; amphidiploids; amphidiploïdes; fluorescent in situ hybridization; gamètes non-réduits; génomes C et M; hybridation in situ en fluorescence; unreduced gametes.