The global increase in the morbidity/mortality rate of Mycobacterial infections, predominantly renascent tuberculosis, leprosy, and Buruli ulcers have become worrisome over the years. More challenging is the incidence of resistance mediated by mutant Mycobacterium strains against front-line antitubercular drugs. Homologous to all Mycobacteria species is the GlcNAc-6-phosphate deacetylase (NagA) which catalyzes essential amino sugars synthesis required for cell wall architecture, hence, metamorphosing into an important pharmacological target for curtailing virulence and drug-resistance. This study used integrated bioinformatics methods, MD simulations, and DynaMut and PolyPhen2 to; explore unique features, monitor dynamics, and analyze the functional impact of non-synonymous single-nucleotide polymorphisms of the six NagA of most ruinous Mycobacterium species; tuberculosis (Mtb), smegmatis (MS), marinum (MM), ulcerans, africanum, and microti respectively. This approach is essential for multi-targeting and could result in the identification of potential polypharmacological antitubercular compounds. Comparative sequential analyses revealed ≤ 50% of the overall structure, including the catalytic Asp267 and reactive Cys131, remained conserved. Interestingly, MS-NagA and MM-NagA possess unique hydrophobic isoleucine (Ile) residues at their active sites in contrast to leucine (Leu) found in other variants. More so, unique to the active sites of the NagA is a 'subunit loop' that covers the active site; probably crucial in binding (entry and exit) mechanisms of targeted NagA inhibitors. Relatively, nsSNP mutations exerted a destabilizing effect on the native NagA conformation. Structural and dynamical insights provided, basically pin-pointed the "Achilles' heel" explorable for the rational drug design of target-specific 'NagA' inhibitors potent against a wide range of mycobacterial diseases.
Keywords: Bioinformatics tools; GlcNAc-6-phosphate deacetylase protein; Molecular dynamics simulations; Mutation; Mycobacterial infections; Peptidoglycan.