In emicizumab prophylaxis, the concomitant therapy using bypassing agents (BPAs) is required for breakthrough bleeding and invasive procedures with attention to thrombotic complications. To predict coagulant effects of BPAs in emicizumab-treated patients with haemophilia A (PwHA) with inhibitor (PwHAwI), blood samples from emicizumab-treated PwHAwI (n = 8) and PwHA without inhibitor (n = 2) in phase 1/2 and HAVEN 1 study, spiked with activated prothrombin complex concentrates (aPCC) or recombinant factor VIIa (rFVIIa) ex vivo, and blood samples from emicizumab-treated PwHAwI-receiving BPAs were analysed by Ca2+ -triggered rotational thromboelastometry (ROTEM) and ellagic acid/tissue factor-triggered clot waveform analysis (CWA). Spiked aPCC, corresponded to 10-100 U/kg, markedly shortened ROTEM parameters beyond the normal range, while spiked rFVIIa, corresponded to 90-270 μg/kg, shortened them within near-normal range. Each of the spiked BPA-improved adjusted maximum coagulation velocity of CWA to within or near the normal range. In blood samples at post-infusion of aPCC (44-73 U/kg) or rFVIIa (79-93 μg/kg), the parameters of both assays improved to approximately the normal range. Taken together, ex vivo results of spiking tests in ROTEM and CWA, except aPCC spiking test in ROTEM, were relatively consistent with in vivo ones, and could usefully predict the coagulant effects of concomitant bypassing therapy for emicizumab-treated PwHAwI.
Keywords: bispecific antibodies; blood coagulation factor inhibitors; blood coagulation tests; haemophilia A; treatment.
© 2020 British Society for Haematology and John Wiley & Sons Ltd.