The discovery of mutations associated with familial forms of Alzheimer's disease (AD), has brought imperative insights into basic mechanisms of disease pathogenesis and progression and has allowed researchers to create animal models that assist in the elucidation of the molecular pathways and development of therapeutic interventions. Position 717 in the amyloid precursor protein (APP) is a hotspot for mutations associated with autosomal dominant AD (ADAD) and the valine to isoleucine amino acid substitution (V717I) at this position was among the first ADAD mutations identified, spearheading the formulation of the amyloid cascade hypothesis of AD pathogenesis. While this mutation is well described in multiple kindreds and has served as the basis for the generation of widely used animal models of disease, neuropathologic data on patients carrying this mutation are scarce. Here we present the detailed clinical and neuropathologic characterization of an APP V717I carrier, which reveals important novel insights into the phenotypic variability of ADAD cases. While age at onset, clinical presentation and widespread parenchymal beta-amyloid (Aβ) deposition are in line with previous reports, our case also shows widespread and severe cerebral amyloid angiopathy (CAA). This patient also presented with TDP-43 pathology in the hippocampus and amygdala, consistent with limbic predominant age-related TDP-43 proteinopathy (LATE). The APOE ε2/ε3 genotype may have been a major driver of the prominent vascular pathology seen in our case. These findings highlight the importance of neuropathologic examinations of genetically determined AD cases and demonstrate striking phenotypic variability in ADAD cases.
Keywords: APOE; Alzheimer’s disease; Amyloid precursor protein; Beta-amyloid; Cerebral amyloid angiopathy; London mutation.