Background: Contralateral strength training (CST) is increasingly investigated and employed as a non-conventional way to induce an indirect gain in strength in the weakened untrained limb. However, its effects on gait performance are more controversial.
Research question: To assess and compare the effects of contralateral (CST) and direct (DST) strength training on spatio-temporal parameters, kinematic and kinetic descriptors of gait in persons with relapsing-remitting multiple sclerosis (PwMS).
Methods: Twenty-eight PwMS (EDSS 2.0-5.5) with inter-side difference in ankle dorsiflexors' strength ≥ 20 % and moderate gait impairment (walking speed 0.70-0.94 m/s), were randomly assigned to a CST (undergoing training of the less-affected dorsiflexors) or DST group (where the most-affected dorsiflexors were trained). Before and after a 6-week high-intensity resistance training (three 25-minute sessions/week), PwMS underwent bilateral measurements of dorsiflexors' maximal strength and assessment of gait spatio-temporal parameters, lower limb joint kinematics and kinetics.
Results and significance: Following the training period, muscle strength increased significantly in both groups (on average, CST + 29.5 %, p < 0.0005; DST + 15.7 %, p = 0.001) with no difference between the two interventions. Significant changes in gait speed (+16.5 %; p < 0.0001) and stride length (+6.0 %; p = 0.04) were detected only after DST, while no difference was detected in the CST group. Ankle moment and ROM were unaffected by the training. In PwMS with mild to moderate disability and lower limb dorsiflexors' strength asymmetry, CST was not inferior to DST in inducing significant strength gains in the untrained most-affected limb. However, only DST significantly improved gait performance and, specifically, walking speed. Even though CST did not worsen asymmetry, data suggest that contralateral approaches should not be recommended straightaway if the training goal is to improve outcomes other than strength and, specifically, walking speed.
Keywords: Cross-education; Gait speed; Multiple sclerosis; Muscle weakness; Resistance training.
Copyright © 2020 Elsevier B.V. All rights reserved.