Efficient and stable electrocatalysts for oxygen reduction reaction and freestanding electrode structure were developed to reduce the use of polymer binders in the cathode of metal-air batteries. Considering the unique geometrical configurations of helical carbon nanotubes (CNTs) and improved properties compared with straight CNTs, we prepared high-purity Co@CoOx/helical nitrogen-doped carbon nanotubes (Co@CoOx/HNCNTs) on a carbon fiber paper by hydrothermal and single-step in situ chemical vapor deposition strategies. Under an optimized growth time (1 h), the synthesized Co@CoOx/HNCNTs provide richer edge defects and active sites and show prominent electrocatalytic performance toward oxygen reduction reaction (ORR) under alkaline media compared with Co@CoOx/HNCNTs-0.5 h and Co@CoOx/HNCNTs-2 h. The soft X-ray absorption spectroscopy technique is used to investigate the influences of different growth times on the electronic structure and local chemical configuration of Co@CoOx/HNCNTs. Furthermore, the Al-air coin cell employing Co@CoOx/HNCNTs-1 h as the binder-free cathode exhibits an open-circuit voltage of 1.48 V, a specific capacity of 367.31 mA h g-1 at the discharge current density of 1.0 mA cm-2, and a maximum power density (Pmax) of 3.86 mW cm-2, which are superior to those of Co@CoOx/HNCNTs-0.5 h and Co@CoOx/HNCNTs-2 h electrodes. This work provides valuable insights into the development of scalable binder-free cathodes, exploiting HNCNT composite materials with an outstanding electrocatalytic performance for ORR in Al-air systems.
Keywords: Al−air battery; binder-free electrode; helical carbon nanotubes; high yield and purity; oxygen reduction reaction.