Apohemoglobin (apoHb) contains vacant hydrophobic heme-binding pockets that can bind to a variety of hydrophobic molecules. Thus, apoHb is a promising protein for drug delivery, bioimaging, and heme scavenging. Unfortunately, apoHb has a short half-life and precipitates at physiological temperature. In this study, apoHb was surface-conjugated with poly(ethylene glycol) (PEG) to improve the therapeutic potential of apoHb. The scalable PEGylation process had >95% protein yield with ∼10 to 12 PEGs attached to each apoHb αβ dimer. The resulting PEG-apoHb had an average molecular weight of ∼80 to 90 kDa and a hydrodynamic diameter of 11 nm. PEG-apoHb maintained high heme-binding affinity and 30-40% of the heme-binding activity. Moreover, heme-bound and heme-free PEG-apoHb bound to haptoglobin, enabling PEG-apoHb to potentially target CD163+ macrophages and monocytes. Finally, PEG-apoHb was stable at physiological temperature with minimal precipitation. In summary, the in vitro results shown demonstrate that PEG-apoHb could be an effective in vivo heme scavenger during states of hemolysis.